Solar Thermal Systems

Design and Applications in the UAE

Murat Aydemir Viessmann Middle East FZE

General Manager (M.Sc. Mech.Eng., ASHRAE)

Dubai Knowledge Village Congress Centre, Dubai 20.4.2009

Viessmann Werke

Founded:	1917
Headquarters:	Allendorf (Eder) GER
Products: Employees:	Comprehensive product range heating- and climate technology 8.600
Turn-over:	1,7 Bil. Euro
Export Share:	60 %

Third generation family-owned enterprise Among the Top 3 of industry www.viessmann.com

Viessmann Headquarter

Allendorf (Eder), Germany 130 km North of Frankfurt

Comprehensive product range

For all energy sources and all output ranges - 1.5 kW to 20 MW in three program levels

1,5 kW – 20.000 kW

Energy sources:	Oil, natural gas, solar, bio energy (wood, biogas), natural heat
Output range:	1,5 kW to 20.000 kW
Range categories:	100 Plus, 200 Comfort, 300 Excellence
System solutions:	Integrated system components

Viessmann has system solutions for heating, hot water, steam and solar energy applications in housing and commercial projects

Solar Energy – The power source of the earth

In less than four hours the sun radiates the annual energy demand of the world's population to the earth.

VIESMANN

Solar Energy Murat Aydemir Viessmann Middle East Dubai 20.04.2009

Solar energy Annual energy amount (global radiation)

Country	City	Annual energy amount
	kWh / m² x year	
UAE	Dubai	2027
Saudi Arabia	Riyadh	1873
Jordan	Amman	1870
Syria	Damascus	1862
Lebanon	Beirut	1734
Italy	Milano	1241
France	Paris	1127
Germany	Frankfurt	1087
UK	London	899

Solar radiation on the Earth

Utilisation of solar energy in the collectors Output / losses

Daily energy values irradiated onto the horizontal plane over a 12 month period

VIESMAN

Solar Energy related to buildings

(direct with PV)

 \rightarrow Solar lighting

Concentrated Solar Power

\rightarrow Bio Fuels

Solar Energy Murat Aydemir Viessmann Middle East Dubai 20.04.2009

Solar energy related to buildings

What can we do with the heat?

 \rightarrow Heat

- Domestic hot water >80%
- Pool heating
- Heating support in cold climates
- Process heat
- Solar cooling with absorption chillers
- Solar desalination

N N M

Solar-thermal: Heat through sunshine

Vitosol 100/200-F Vi Flat tu

Vitosol 200-T tube

Vitosol 300-T tube-heat pipe Solar Energy Murat Aydemir Viessmann Middle East Dubai 20.04.2009

VIESMAN

Vitosol 200-F Flat collector

All round folded aluminium frame

Stable, highly transparent cover made from special glass

"S" patterned copper absorber

Highly effective thermal insulation

Vitosol 200-T Evacuated tube collector with copper absorber, direct flow

Highly effective thermal insulation

Coaxial distributor pipe

Header

Direct flow Sol-titanium coated absorber

High grade, low ferrous glass

Vitosol 300-T

Evacuated tube collector with copper absorber, heat pipe technology

Highly effective thermal insulation

"Dry" connection, no direct contact between carrier and heat transfer medium

High grade, low ferrous glass

Duotec twin-pipe heat exchanger with integral overheating protection

Heat pipe

Sol-titanium coated absorber

Solar Thermal Collector efficiency

Solar Energy Murat Aydemir Viessmann Middle East Dubai 20.04.2009

Life expectations of solar collectors

20 years +

VIESMANN

Life expactations of solar collectors

35 years

Certificates of solar collectors

Performance & Reliability Test reports according to EN 12975

Institut für Solarenergieforschung GmbH Hameln / Emmerthal

ISFH

Am Ohrberg 1 · 31860 Emmerthal · Germany

Test Centre for Solar Thermal Components and Systems

Report of Performance Test according to EN 12975-2 for a Glazed Solar Collector

Year of production

Serial number

To al Constan	
Test Centre	
Address	Institut für Solarenergieforschung GmbH, Hameln/Emmerthal Am Ohrberg 1 31860 Emmerthal, Germany
Contact person	DiplIng. C. Lampe Tel.: +49 (0)5151/ 999-522 Fax: -500 E-Mail: Pruefstelle@isfh.de
Test Basis	
Test according to	EN 12975-2:2006 Section 6
Test Report	
Number Date Number of pages Date of translation	03-06/D 27.06.2006 20 25.10.2007
Customer	
Address	Viessmann Werke GmbH & Co. KG Viessmannstraße 1 D- 35107 Allendorf Germany
Contact person	Mr. Sigurd Wenzler Tel.: +49 (0)6452/70-2862, Fax: -5862
Test Collector	
Туре	Vitosol 200-F
Manufacturer	Viessmann Werke GmbH & Co. KG
Serial- or Prototype	Serial type

Institut für Solarenergieforschung GmbH Hameln / Emmerthal

Test Centre for Solar Thermal Components and Systems

Report of Reliability Test according to EN 12975-2 for a Glazed Solar Collector

Test Centre

Am Ohrberg 1 · 31860 Emmerthal · Germany

Address Institut für Solarenergieforschung GmbH, Hameln/Emmerthal Am Ohrberg 1 31860 Emmerthal, Germany Dipl.-Ing. C. Lampe Contact person Tel.: +49 (0)5151/ 999-522; Fax: -500 E-Mail: Pruefstelle@isfh.de Test Basis Test according to EN 12975-2:2006 Section 5 Test Report Number 04-06/Q Date 28 06 2006 Number of pages 18 Date of translation 31.10.2007 Customer Viessmann Werke GmbH & Co, KG Address Viessmannstraße 1 D- 35107 Allendorf Germany Contact person Mr. Sigurd Wenzler Test Collector Type Vitosol 200-F Manufacturer

Serial- or Prototype

Year of production

Serial number

Tel.: +49 (0)6452/70-2862, Fax: -5862 Viessmann Werke GmbH & Co. KG Serial type 2006 7188383613498102

SMAN W

Solar Energy Murat Aydemir Viessmann Middle East Dubai 20.04.2009

Institut für Solarenergieforschung GmbH, Hameln / Emmerthal; Am Ohrberg 1; 31860 Emmerthal; Germany

7188383613499109

2006

Institut für Solarenergieforschung GmbH, Hameln / Emmerthal; Am Ohrberg 1; 31860 Emmerthal; Germany

Solar Modernisation of a Hotel Project

Solar Energy Murat Aydemir Viessmann Middle East Dubai 20.04.2009 MAGIC LIFE Sarıgerme Güneş Enerjisi Sistemi

Vie<mark>ssmann'</mark> in katkılarıyla

- Solar collectors, Vitosol
- 2 pumping station **Divicon** and accessories
- 3 Dual mode or multi mode DHW cylinder
- 4 Control unit **Vitosolic**
- 5 Back-up system oil/gas boiler, electrical or heat pump

- Planning data
- Basic information
- DHW cylinder volume
- Absorber surface area
- Pipe sizing
- Circulation pump (Solar Divicon) sizing
- Expansion vessel sizing
- Vitosol control unit

Basic information for a single house 120 m²

Consumption

A – Room heating requirement of a building

- B Room heating requirement
- of a low-energy house
- C Hot water required

Gain

D – Solar energy yield with 5 m²
of absorber surface area
E – Solar energy yield with 15 m² of absorber surface area

Design of a solar thermal system for DHW **Basic** information

VIESMANI

Hot water demand calculation

	DHW consumption V _P in I/(d·person) at a DHW temperature	
	45 °C	60 °C
In domestic homes		
High demand	50 to 80	35 to 56
Average demand	30 to 50	21 to 35
Low demand	15 to 30	11 to 21

Max 50 l/pers/day at 60°C

or 70 l/pers/day at 45°C

Sample:

4 pers x 50 l/pers/day = 200 l/day at 60°C or 280 l/day at 45°C

Design of a solar thermal system for DHW Absorber surface area

- Solar radiation ~1000 W/m2
- If sun is shinning for 6 7 hours/day =>
- Daily maximum gain 6 7 kWh/m2
- The DHW temperature 60°C/10°C
- The DHW flow: 6/50 = 0.12 m3/(h x m2)
- 100 I of DHW at 60°C per m² of collector

In our case:

400 l/day / 100 l/m² = 4 m² => 2 collectors Vitosol 200F

Thumb rules

DHW demand:

Collector area:

50 l/pers/day at 60°C

1 m² at 100 I of DHW at 60°C

Buffer tank:

50 l/m² of absorber area

VIESMANN

Solar simulation

Solar simulation software

VIESMANN

Large scale solar thermal, Example for a 10000 liter/day hot water system

Large scale solar thermal, Example for a 10000 liter/day hot water system

Results of Annual Simulation

Installed Collector Power:	70,22 kW	
Collector Surface Area Irradiation:	193,60 MWh	2.079,88 kWh/m²
Energy Produced by Collectors:	124,05 MWh	1.332,75 kWh/m²
Energy Produced by Collector Loop:	121,10 MWh	1.301,07 kWh/m²
DHW Heating Energy Supply:	212,38 MWh	
Solar Contribution to DHW:	119 MWh	
Energy from Auxiliary Heating:	110,39 MWh	

Electricity Savings:	140,0 MWh
CO2 Emissions Avoided:	93.243,48 kg
DHW Solar Fraction:	51,9 %
Fractional Energy Savings (prEN 12976):	48,9 %
System Efficiency:	61,5 %

Solar Energy Murat Aydemir Viessmann Middle East Dubai 20.04.2009

VIESMANN

Large scale solar thermal, Example for a 10000 liter/day hot water system

VIESMANN

Solar hot water generation closed loop- open loop differences

Thermosiphon is the easiest solution:

No power supply, no pump, no control, works everywhere **Advantages of closed loop system:**

No tank on collector, architecturally better installation Hot water resirculation possible, less water losses, no problems with low water quality

Better control, higher efficiency, no over night cooling losses Best for **large scale** solar systems

Example: Selection of a Solar cooling system in UAE

Installation examples

Case study – Green Building, Manchester

VIESMANN

Installation examples

Installation examples

Vacuum tube collectors on a vertical surface

Installation examples Solar panels as shading elements for the building

Installation examples in UAE Jebel Ali Process heating system

Solar Absorber gross surface area : 300 m^2 Energy produced by collectors : 376,4 MWh/yearDiesel savings : $48 \ 100 \text{ liters/year}$. $CO_2 \text{ emissions avoided : } 132 \ 500 \text{ kg}$ Application0 : Process heat for hot water loop at manufacturing plant

Installed by Value Addition FZE

VIESMAN

Installation examples in UAE Jebel Ali Process heating system

Solar Energy Murat Aydemir Viessmann Middle East Dubai 20.04.2009

Installation examples in UAE Palm Jumeirah Residential buildings solar hot water system

Solar Absorber gross surface area :

14 x 200 m² (2800 m²)

Energy produced by collectors : 3805 MWh/year

Natural gas savings : 471000 m³/year.

CO₂ emissions avoided : 1 070 000 kg

Backup system Gas fired wall hung condensing boilers

Installed by Value Addition FZE

VIESMANN

Installation examples in UAE Palm Jumeirah Solar Energy System

Viessmann Flat Solar Thermal Panels with original support system and connection pipes

Installation examples in UAE Palm Jumeirah Solar Energy System

Viessmann Domestic Hot Water cylinders

Viessmann Gas condensing boilers for the backup of the system (109 % efficiency)

Installation examples in UAE Solar Energy System for villa's in Jumeirah

Solar hot water system with electric backup

Installation examples in UAE Al Quoz Solar Energy System labour camp

Operational since 2000

Solar energy needs good engineering design and installation to reach the goal !

Together with the design of renewables check the energy saving potential !

Saving + renewable = Target

Vitocal 160-A

Air source heat pump for DHW heating 1,52 kW, 285 liters

Sample Calculation: 300liters/day hot water

1.Electrical heater $Q = 300 \times (60-10)/860 = 17,5 \text{ kW}$ Daily loss 1 kW Electric consumption: 18,5 kW 2. Vitocal cylinder with heat pump Q = 18,44 kW required electricity 5,2 kW Cooling inside approx 17 kW Saving at the AC of housing 5,7 kW Electric consumption: 5,7-5,2 = -0.5 kW

SAVING = 18,5 +0,5 = 19 kW Annual expected saving 6840 kWh

(Max connected electrical load 500 W)

/IESMAN

Viessmann Middle East

Solar Energy Murat Aydemir Vi Dubai 20.04.2009

Vitocal 160-A in combination with solar energy

Max electrical load 500 W for a villa instead of 5-6 kW of electrical heaters $$_{\rm A}$$

VIESMAN

Solar Energy Murat Aydemir Viessmann Middle East Dubai 20.04.2009

Questions ?

