

Water Resources in Oman Natural Sources (Raintall, Groundwater) Natural Water Desalination (Sea 25% vater or brackish Desalination 1% Virtual Water **Imported** Treated Waste "Virtual Water" 74% Water Other Sources

Current Water Consumption

Current Use of Water Resources

- planning & management in a changing Environment
- planning scenarios (projects)
- Limited observation data

Physically based models for predicting future situations beyond the observation range

Computation:
High effort and
Numerical
problems

+

climate uncertainties data uncertainty

Comprehensive Nonlinear Optimization

Computationally unfeasible

Required: robust and fast but nonetheless rigorous models

and a Powerful tailor made optimization Tool

APPM: A Tailor Made new Approach for IWRM in an Irrigation Dominated Arid Environment

Tool & IWRM development

A new Generation of Tools for IWRM Implementation and Operation

APPM - Assessment Prognosis Planning and Management Tool:

Water resources availability Water consumers

- Meteorology and regional climate change
- historic rainfall time series
- local model of climate development
- Integrated Catchment modelling
- Constructional measures

Stochastic series of water use

- Planning scenarios
- maximum benefits
- minimum costs
- target performance comparison
- Identify the biggest potential to improve water use efficiency?

Groundwater reservoir

- Consequences of operations
- Restrictions:

e.g. sustainable yield

security of supply

Stochastic series of groundwater recharge

APPM - Assessment Prognosis Planning and Management Tool:

Water resources availability

- Meteorological conditions
- actual data
- local model of climate development
- Catchments
- actual data from groundwater level

b) optimal operation

Actual data of water use

Water consumers

- point tracing of actual consumption
- state of plants, soils
- target performance comparison
- maximum benefit?
- Most beneficial operation e.g. irrigation control,

Groundwater reservoir

Optimized operation with respect to a most desirable reservoir management (e.g. aquifers, recharge basins)

- © Comparison of planned and actual state
- Optimal Backbone operation: water allocation (pumping, storage)

"Best" management

Actual and predicted state of water resources

The APPM Climate Module: Analysis of Present and Future Climatologic Conditions

Step I – Setting Up a Regional Climate Model (RGM)

Global Climate Models (GCM)

Spatial Resolution:

Resolution of GCM-Output is too coarse for the assessment of regional impact from climate change

Validation of GCM-Results - Comparison with measured Values:

Reanalysis of the historic climate differs considerably due to GCM physics and setup

Downscaling

Regional Climate Models (RGM)

- higher resolution compared to GCM
- consideration of relevant processes

⇒ appropriate for assessment of regional climate

Water Resources Assessment

Water Resources Assessment - Surface Water

Estimate of upstream inflow to the groundwater model domain

The APPM Groundwater Resources Module:

Modelling as a basis for sound assessment

Density driven flow

Saltwater intrusion

Agriculture:

Most beneficial and sustainable Irrigation operation and

- Simple automatic irrigation device
- Less water consumption and higher yield
- Increased productivity
- Included: climate change uncertainties

Meteorology

Integrated Water Resources Management: Pilot Area

Optimal Water Distribution

Long-term Planning and

Operative Control

and Aquifer Management

Profitable and **Sustainable Agriculture**

 Recovery of **Groundwater Levels**

 Stopping Saltwater Intrusion by Intelligent **Aquifer Management**

Technical realisation by

Water-Backbone:

- Extraction of groundwater at suitable sites
- Water of better quality delivered to consumers
- Intelligent aquifer management by optimal reallocation of water resources

23

 Wastewater treatment and re-use

The APPM Water Resources Module: Assessment of Groundwater Recharge and Aquifer Management Management of interacting nonlinear processes

Water Resources Assessment

Data Analysis & Processing, Research & Development NEW TAILOR MADE APPROACHES

NEW APPROACH FOR OMAN'S WATER MANAGEMENT

Optimal Decisions need

Best solutions for different goals: sustainability, water saving, high benefit for farmers

Autonomous Water Management needs

Reliable and simple management tool & databank for routine application - ownership via active participation & capacity development

NEW SOLUTION

SYNTHESIS OF

ANN: Artificial Neural Networks: fast & simple use

+

Physically based models: better for Global Change

Artificial Intelligence & optimal irrigation via automatic device

+

Innovative, tailor made multi-objective optimization

